summaryrefslogtreecommitdiff |

**diff options**

author | Andrew Hunter <ahh@google.com> | 2014-09-04 14:17:16 -0700 |
---|---|---|

committer | Greg Kroah-Hartman <gregkh@linuxfoundation.org> | 2014-10-09 12:23:49 -0700 |

commit | 79d627d4cd0f2823115f70843c16709ba2869611 (patch) | |

tree | d9bfc57e1926de33467a1b11c08a84337428804f | |

parent | 1c1e2cc7f5140a38ffbe2d3ffd037c09969c4860 (diff) |

jiffies: Fix timeval conversion to jiffies

commit d78c9300c51d6ceed9f6d078d4e9366f259de28c upstream.
timeval_to_jiffies tried to round a timeval up to an integral number
of jiffies, but the logic for doing so was incorrect: intervals
corresponding to exactly N jiffies would become N+1. This manifested
itself particularly repeatedly stopping/starting an itimer:
setitimer(ITIMER_PROF, &val, NULL);
setitimer(ITIMER_PROF, NULL, &val);
would add a full tick to val, _even if it was exactly representable in
terms of jiffies_ (say, the result of a previous rounding.) Doing
this repeatedly would cause unbounded growth in val. So fix the math.
Here's what was wrong with the conversion: we essentially computed
(eliding seconds)
jiffies = usec * (NSEC_PER_USEC/TICK_NSEC)
by using scaling arithmetic, which took the best approximation of
NSEC_PER_USEC/TICK_NSEC with denominator of 2^USEC_JIFFIE_SC =
x/(2^USEC_JIFFIE_SC), and computed:
jiffies = (usec * x) >> USEC_JIFFIE_SC
and rounded this calculation up in the intermediate form (since we
can't necessarily exactly represent TICK_NSEC in usec.) But the
scaling arithmetic is a (very slight) *over*approximation of the true
value; that is, instead of dividing by (1 usec/ 1 jiffie), we
effectively divided by (1 usec/1 jiffie)-epsilon (rounding
down). This would normally be fine, but we want to round timeouts up,
and we did so by adding 2^USEC_JIFFIE_SC - 1 before the shift; this
would be fine if our division was exact, but dividing this by the
slightly smaller factor was equivalent to adding just _over_ 1 to the
final result (instead of just _under_ 1, as desired.)
In particular, with HZ=1000, we consistently computed that 10000 usec
was 11 jiffies; the same was true for any exact multiple of
TICK_NSEC.
We could possibly still round in the intermediate form, adding
something less than 2^USEC_JIFFIE_SC - 1, but easier still is to
convert usec->nsec, round in nanoseconds, and then convert using
time*spec*_to_jiffies. This adds one constant multiplication, and is
not observably slower in microbenchmarks on recent x86 hardware.
Tested: the following program:
int main() {
struct itimerval zero = {{0, 0}, {0, 0}};
/* Initially set to 10 ms. */
struct itimerval initial = zero;
initial.it_interval.tv_usec = 10000;
setitimer(ITIMER_PROF, &initial, NULL);
/* Save and restore several times. */
for (size_t i = 0; i < 10; ++i) {
struct itimerval prev;
setitimer(ITIMER_PROF, &zero, &prev);
/* on old kernels, this goes up by TICK_USEC every iteration */
printf("previous value: %ld %ld %ld %ld\n",
prev.it_interval.tv_sec, prev.it_interval.tv_usec,
prev.it_value.tv_sec, prev.it_value.tv_usec);
setitimer(ITIMER_PROF, &prev, NULL);
}
return 0;
}
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Paul Turner <pjt@google.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Reviewed-by: Paul Turner <pjt@google.com>
Reported-by: Aaron Jacobs <jacobsa@google.com>
Signed-off-by: Andrew Hunter <ahh@google.com>
[jstultz: Tweaked to apply to 3.17-rc]
Signed-off-by: John Stultz <john.stultz@linaro.org>
[bwh: Backported to 3.16: adjust filename]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

-rw-r--r-- | include/linux/jiffies.h | 12 | ||||

-rw-r--r-- | kernel/time.c | 54 |

2 files changed, 30 insertions, 36 deletions

diff --git a/include/linux/jiffies.h b/include/linux/jiffies.h index 1f44466c1e9d..c367cbdf73ab 100644 --- a/include/linux/jiffies.h +++ b/include/linux/jiffies.h @@ -258,23 +258,11 @@ extern unsigned long preset_lpj; #define SEC_JIFFIE_SC (32 - SHIFT_HZ) #endif #define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29) -#define USEC_JIFFIE_SC (SEC_JIFFIE_SC + 19) #define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\ TICK_NSEC -1) / (u64)TICK_NSEC)) #define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\ TICK_NSEC -1) / (u64)TICK_NSEC)) -#define USEC_CONVERSION \ - ((unsigned long)((((u64)NSEC_PER_USEC << USEC_JIFFIE_SC) +\ - TICK_NSEC -1) / (u64)TICK_NSEC)) -/* - * USEC_ROUND is used in the timeval to jiffie conversion. See there - * for more details. It is the scaled resolution rounding value. Note - * that it is a 64-bit value. Since, when it is applied, we are already - * in jiffies (albit scaled), it is nothing but the bits we will shift - * off. - */ -#define USEC_ROUND (u64)(((u64)1 << USEC_JIFFIE_SC) - 1) /* * The maximum jiffie value is (MAX_INT >> 1). Here we translate that * into seconds. The 64-bit case will overflow if we are not careful, diff --git a/kernel/time.c b/kernel/time.c index 7c7964c33ae7..3c49ab45f822 100644 --- a/kernel/time.c +++ b/kernel/time.c @@ -496,17 +496,20 @@ EXPORT_SYMBOL(usecs_to_jiffies); * that a remainder subtract here would not do the right thing as the * resolution values don't fall on second boundries. I.e. the line: * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding. + * Note that due to the small error in the multiplier here, this + * rounding is incorrect for sufficiently large values of tv_nsec, but + * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're + * OK. * * Rather, we just shift the bits off the right. * * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec * value to a scaled second value. */ -unsigned long -timespec_to_jiffies(const struct timespec *value) +static unsigned long +__timespec_to_jiffies(unsigned long sec, long nsec) { - unsigned long sec = value->tv_sec; - long nsec = value->tv_nsec + TICK_NSEC - 1; + nsec = nsec + TICK_NSEC - 1; if (sec >= MAX_SEC_IN_JIFFIES){ sec = MAX_SEC_IN_JIFFIES; @@ -517,6 +520,13 @@ timespec_to_jiffies(const struct timespec *value) (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; } + +unsigned long +timespec_to_jiffies(const struct timespec *value) +{ + return __timespec_to_jiffies(value->tv_sec, value->tv_nsec); +} + EXPORT_SYMBOL(timespec_to_jiffies); void @@ -533,31 +543,27 @@ jiffies_to_timespec(const unsigned long jiffies, struct timespec *value) } EXPORT_SYMBOL(jiffies_to_timespec); -/* Same for "timeval" +/* + * We could use a similar algorithm to timespec_to_jiffies (with a + * different multiplier for usec instead of nsec). But this has a + * problem with rounding: we can't exactly add TICK_NSEC - 1 to the + * usec value, since it's not necessarily integral. * - * Well, almost. The problem here is that the real system resolution is - * in nanoseconds and the value being converted is in micro seconds. - * Also for some machines (those that use HZ = 1024, in-particular), - * there is a LARGE error in the tick size in microseconds. - - * The solution we use is to do the rounding AFTER we convert the - * microsecond part. Thus the USEC_ROUND, the bits to be shifted off. - * Instruction wise, this should cost only an additional add with carry - * instruction above the way it was done above. + * We could instead round in the intermediate scaled representation + * (i.e. in units of 1/2^(large scale) jiffies) but that's also + * perilous: the scaling introduces a small positive error, which + * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1 + * units to the intermediate before shifting) leads to accidental + * overflow and overestimates. + * + * At the cost of one additional multiplication by a constant, just + * use the timespec implementation. */ unsigned long timeval_to_jiffies(const struct timeval *value) { - unsigned long sec = value->tv_sec; - long usec = value->tv_usec; - - if (sec >= MAX_SEC_IN_JIFFIES){ - sec = MAX_SEC_IN_JIFFIES; - usec = 0; - } - return (((u64)sec * SEC_CONVERSION) + - (((u64)usec * USEC_CONVERSION + USEC_ROUND) >> - (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; + return __timespec_to_jiffies(value->tv_sec, + value->tv_usec * NSEC_PER_USEC); } EXPORT_SYMBOL(timeval_to_jiffies); |